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a b s t r a c t

In this study, the data set of the 2006 CHF look-up table is partitioned into five subsets by using Fuzzy c-
means (FCM) clustering algorithm. The elements of the same subset are ‘similar’ to each other in some
sense while those assign to different subsets are ‘dissimilar’. At the same time, a Genetic Neural Network
(GNN) model for predicting critical heat flux (CHF) is set up. It has some advantages of its globe optimal
searching, quick convergence speed and solving non-linear problem. The methods of establishing the
model and training of GNN are discussed particularly in the article. Local condition type CHF is predicted
by GNN on the basis of 6930 CHF data from the 2006 CHF look-up table. The prediction results are
consistent with database very well. Next, the mainly parametric trends of the CHF are analyzed by
applying GNN. At last, prediction of dryout point is investigated by GNN with distilled water flowing
upward through narrow annular channel with 0.95 mm and 1.5 mm gaps, respectively. The prediction
results by GNN have a good agreement with experimental data. Simulation and analysis results show
that the network model can effectively predict CHF.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Critical heat flux (CHF) is one of the most important quantities
when considering the safety limits of nuclear reactors, steam
generators and other thermal units. If a heated surface is cooled by
a fluid under nucleate boiling condition, the heat transfer coeffi-
cient is relatively high and a large amount of heat can be removed
with small temperature difference between the wall and fluid.
However, this excellent characteristic of heat transfer is not
boundless. The heat flux cannot increase indefinitely. At some
condition, the steam produced leads to the formation of a contin-
uous vapor film over the surface which may cause the destruction
of the heater due to a sudden increase of the surface temperature.
The pressurized water reactors (PWRs) shall be designed with
sufficient thermal (power) margin for the specifically acceptable
fuel design limits to ensure that they are operated safely within the
limiting conditions for operation. The limitation is produced from
the analysis of CHF. At the CHF point, there is a sharp decrease of the
coolant heat transfer coefficient, which would result in the high
cladding temperature and the probable failure of nuclear fuel. Due
to the complex behaviors of many variables, no deterministic
theory exists until now for the prediction of the CHF except
approximation from experimental data to design a specific type of
.

son SAS. All rights reserved.
nuclear fuel. The uncertainty of the CHF experimental data is very
broad because of the uncontrollable parameters such as turbulent
flow, surface roughness and fabrication tolerances of test section
[1]. It directly affects the thermal margin of nuclear power plants.

Reactor thermal hydraulic designers have developed and
updated the CHF correlations to find a best-fit function by
conventional regression analysis and trial-and-error-based func-
tion model search. We need to understand the effects of many input
variables on the CHF in selecting a function model or deriving an
equation. Generally, they are analyzed on the basis of an empirical
correlation from experimental data by using some physical
knowledge [2–5]. Another approach is the CHF look-up table which
has been widely adopted due to its accuracy or the widely appli-
cable ranges [6]. Recently, advanced approaches to improving CHF
prediction in simple geometry have been studied. In reference [7],
the alternating conditional expectation algorithm, a kind of
nonparametric regression method, was used to generate correla-
tions automatically. It tries to find an optimal transformation of
variables and then simple regression analysis is performed for the
transformed variables. In reference [8], genetic programming was
used to find a mathematical expression in a symbolic form between
dependent and independent variables. Hundreds of different
models and correlations on the prediction of CHF exist in the open
literature and enormous amounts of experimental data are avail-
able at present. Most of the studies carried out on CHF have been
reviewed in various publications. The work of Katto [9] is particu-
larly interesting as he deals with the CHF phenomenon specifically
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Nomenclature

Ai the ith prediction signal
BP back-propagation
CHF critical heat flux (kW m�2)
djk the distance from xj to Vk

dH hydraulic diameter
FCM fuzzy c-means
F($) the activation function
Ffitness fitness function
Fi the fitness of ith individual
G mass flow velocity (kg m�2 s�1)
GA genetic algorithm
GNN genetic neural network
hfg latent heat (J kg�1)
Jm the sum of objective function
L heated length (m)
m weighting exponent
P pressure (MPa)
Pi the selection probability of ith individual

qcal calculation critical heat flux (kW m�2)
qdata data set critical heat flux (kW m�2)
qexp experimental critical heat flux (kW m�2)
qpre prediction critical heat flux (kW m�2)
Ti the ith goal signal
Vk the cluster center of the kth cluster
wk synaptic weights of neuron
Wi the ith weight gene of chromosome
xp the pth input signal
X a finite set of data
x critical quality
k,k inner product induced norm metric

Greek letters
f the membership matrix
fðsÞ the s iterative membership matrix
4kj the membership degrees of the datum xj in class k
q threshold
qj the jth threshold gene of chromosome
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in both internal and external flows and presents a valuable refer-
ence on this subject.

Fuzzy c-means (FCM) clustering algorithm [10] is one of most
important and popular fuzzy clustering algorithms. It is a widely
applied method for acquiring fuzzy pattern from data set [11]. Its
aim is to partition a set of unlabeled data set into c subsets. The
elements of each subset are ‘similar’ [12]. Therefore, FCM cannot
only obtain more clustering information, but also reflect more
accurately the actual distributing characteristic of data. We can
analysis more accurately the characteristic of these data. There are
two main approaches to clustering. One method is hard clustering;
the other one is fuzzy clustering. However, a characteristic of the
hard clustering method is that the boundary between clusters is
fully defined. In a realistic case, the boundaries between clusters
cannot be clearly defined. Therefore, the fuzzy clustering method is
usually adopted to classify these patterns.

Genetic algorithm (GA) is a powerful optimization technique
inspired by the natural selection principles and Darwin’s species
evolution theory [13]. Because of their robustness and easy cus-
tomization for different kinds of optimization problems, GA has
been successfully used in a wide range of engineering applications.
Compared to the conventional optimization methods that move
from one point to another, GA starts from many points simulta-
neously climbing many peaks in parallel. Therefore, it is less
susceptible to be stuck at local minima than conventional search
methods [14,15]. Also, it is the most useful method [16–19] to solve
optimization problems with multiple objectives. The optimization
parameters are encoded into symbolic structures, metaphorically
called genotypes that carry intrinsic characteristics of the symbolic
individual. As the generation proceeds, populations of chromo-
somes are iteratively altered by biological mechanisms inspired by
natural evolution such as selection, crossover and mutation. Then,
from generation to generation, the average fitness of the individ-
uals increase, evolving the population to its optimum adaptation.
The GA starts the adaptation process from a random generated
population of individuals. Then, each individual is assigned a fitness
that predicts its adaptability, finally, natural selection, crossover
and mutation are simulated. The selection probability of a given
individual is a function of its fitness. The crossover is made by
choosing a random point of the binary string that represents the
genotype, followed by the change of parts between the two
parents. The mutation is simulated by the inversion of one of the
bits of the genotype according to the mutation probability that is
a genetic parameter.

At present, BP neural network [20–23] is widely used because it
can effectively solve non-linear problem. However, there are some
shortcomings for BP neural network, such as slow convergence and
easily deep in local extreme point. This is very disadvantageous
under limited experiment data of CHF. In order to reduce experi-
ment times and improve reliability of network, the present paper
adopts a method to integrate genetic algorithm and neural network
and use genetic algorithm to optimize network weight and
threshold [24–29]. The shortcoming is solved and the weight and
threshold are optimized. The accurate degree of predicting CHF
data is achieved by GNN.

In general, CHF correlations are applicable to specific geometries
and cover specific ranges of system parameters. They cannot be
expanded into conditions far beyond the ranges of their data sets.
Besides these approaches, Groeneveld, et al. [6,30] developed a CHF
table look-up method which has been widely adopted in several
thermal hydraulic computer codes as the standard CHF prediction
method because of its accuracy and the widest applicable ranges. It
covers the following ranges of flow and geometric parameters:
system pressure, 0.1–21.0 MPa; mass flux, 0–8000 kg/m2 s; steam
quality, �0.5–1.0. However, the standard CHF tables are presented
for discrete range of pressure, mass flux and steam quality. They are
usually normalized for a fixed tube diameter of 8 mm. The CHFs for
conditions between the tabulated values are obtained by linear
interpolation.

The aim of this study is to propose a new methoddGNN to
predicate CHF for uniformly heated vertical round tubes within the
wide applicable ranges. It has some advantages of its globe optimal
searching, quick convergence speed and solving non-linear
problem. In this paper, at first, we attempt to classify the CHF data
based on the distribution of the experimental conditions and the
parametric trends of the CHF values. The classification is accom-
plished by using fuzzy clustering. It searches the structure in a data
set and classifies the CHF data into similar groups for handling
these data efficiently. The classification process is necessary to
improve the prediction performance of a GNN because the CHF
experimental conditions are very broad. The classified CHF data are
used to train and test the network. Next, the CHF are predicted by
using GNN. We give the comparisons between the database and
prediction results of GNN. At the same time, the effects such as



H. Wei et al. / International Journal of Thermal Sciences 49 (2010) 143–152 145
pressure, mass flow rate and equilibrium quality of main parame-
ters on CHF are analyzed using GNN. The results agree with prac-
tical behavior as they are generally understood. Finally, GNN is
employed to predict the CHF in narrow annuli channels.

It is well known that Groeneveld CHF look-up table has been
widely adopted in several thermal hydraulic computer codes as the
standard CHF prediction method because of its accuracy and the
widest applicable ranges. This work is only an academic work. In this
study, we only use the database of Groeneveld CHF look-up table to
test the FCM and GNN theory. As an application of GNN, it was used to
predict the CHF for distilled water upward flow in vertical narrow
annuli with bilateral heating. Therefore, the basic experimental
apparatus are briefly introduced in the following section.

2. Experimental apparatus

The experiments were conducted in the following water test loop.
Fig.1 is a schematic of the boiling upward flow system apparatus used
in the experiments. The experimental system consists of a pump,
pressurizer, pre-heater, calibrated flow meter, condenser, test section,
valves and connected pipes. The working fluid is distilled water. Sub-
cooled water is driven by the pump, going through the system pipes,
flow meter, pre-heater, the experimental test section, the condenser,
and finally returning to the pump after being condensed. The mass
flow rate is regulated and maintained by the bypass and the valves. To
pressurize the loop, nitrogen gas was injected to the upper part of the
pressurizer which provides a compressible volume to the loop for
maintaining the desired pressure value.

Test sections are made of specially processed straight stainless
steel tubes with linearity error less than 0.01% to form narrow
concentric annuli whose electrical and mechanical characteristics
were well validated. Fig. 2 shows the diagram of the experimental
test section. It has the following geometrical parameters: length in
850 mm; 10 mm inner diameter of the outside tube, 8.1 mm and
7 mm outer diameter of the inside tube. So the corresponding
annular gap size is 0.95 mm and 1.5 mm, respectively. The test
section is bilaterally heated by AC power supply. In order to ensure
the concentricity and the electrical insulation between the outside
and inside tubes, the three small ceramic rods are arranged at the
same cross section with equal angular interval at the middle of
experimental test section. They are shown in Fig. 3. To reduce the
Fig. 1. Schematic of expe
heat losses of the experimental test section, the whole experi-
mental test section was firstly covered by silicon–aluminium glass
fiber of 120 mm in thickness. At the same time, to compensate heat
loss of the experimental test section, a wire heater of 3 kW in
maximum power was wrapped outside of this heat insulator.
Finally, another silicon–aluminium glass fiber 50 mm in thickness
was wrapped outside of the wire heater. Two thermocouples are
located in the different places of the inner silicon–aluminium glass
fiber along radial direction. Controlling the quantity of compen-
sating heat to make the temperatures of the two thermocouples the
same as possible, then good heat insulation could be acquired for
the experimental section.

301 experimental data were obtained. The ranges of experi-
mental parameters were as follows:

� heated length (L):0.85 m
� pressure (P): 1.08–3.11 MPa
� mass flux (G): 56.5–141.6 kg m�2 s�1

� critical quality (x) : 0.694–0.987.
3. Theories of the classification and GNN

3.1. Fuzzy c-means clustering

In this section, we briefly describe the fuzzy c-means algorithm.
In our notation, let X ¼ fx1; x2;.; xN 3RM

�
, X is a finite set of data

in the pattern space which has N patterns. xj ¼ ðxj1;.; xjpÞ˛RM is
the jth experimental datum, p is the dimension of the pattern
vectors. FCM clustering partitions a data set so as to minimize the
sum of objective function Jm as follows:

Jm ¼
XN

j¼1

Xc

k¼1

�
4kj

�m
djk
�
xj;Vk

�
(1)

Xc

i¼1

4kj ¼ 1;4kj˛½0;1�;cj; djk
�
xj;Vk

�
¼ kxj � Vkk2:

where Vk ¼ ðvk1;.; vkpÞ is a cluster center of the kth cluster. djk is the
distance from xj to Vk, which measures the similarity between the
rimental apparatus.



Fig. 2. Schematic of the test section.
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Fig. 4. FCM clustering procedure for the CHF data.
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datum xj and the cluster center Vk. The weighting exponent m is the
smoothing parameter which represents the fuzziness of clustering.
The elements of the membership matrix f ¼ ½4kj�c�n represent the
membership degrees of the datum xj in class k. Computer or update
the partition matrix fðsÞ using the following iterative rule formula
for given c and m greater the positive integer 1:

4kj ¼
"Xc

i¼1

 
djk

dji

!2=ðm�1Þ#�1

(2)

vij ¼
Pn

k¼1ð4ikÞmxkjPn
k¼1ð4ikÞm

; j ¼ 1;.; p (3)

The FCM algorithm is shown in Fig. 4. The values of c and m are
fixed and any inner product induced norm metric k,k can be
chosen. In this study, the diagonal norm is selected to measure the
similarity of data.

FCM method classifies the database into c clusters via iterative
optimization. It iterates until j4ðaþ1Þ � 4ðaÞj < 3, that is, the
maximum change in membership function between iteration step
a and step aþ 1 is within the convergence criterion 3. In order to
gain the most valid and optimal clustering of data, the validity and
optimality of these partitions are examined by minimizing the
compactness and separation validity function S. It is defined as
Fig. 3. Schematic description of holding concentricity.
S ¼
Pc

i¼1
PN

j¼1

�
4ij

�m
d2

ji

Nmini;j d2
ji

: (4)

It is used as the optimal partition index [31,32] and has a minimum
value for the optimal clustering.

3.2. GNN

3.2.1. Structure of the network
A multiple layer neuron network is established to predict CHF.

Input layer of the prediction network is responding to CHF
parameter. The dimension of input layer can be completely
designed according to influence factors on CHF. Output layer of the
network is the CHF that will be predicted. The number of hidden
layer unit is in direct contract with the predicting precision.
Therefore, there must be the best number of hidden layer unit. The
initial number of hidden layer unit is determined by using experi-
ential method and the experienced relation which is introduced by
Yuan in [33]. In this paper, the dimensions of input and output
layers are 3 and 1, respectively. The hidden layer units are 16.
Therefore, a single hidden layer BP network can meet need of
predicting CHF. Fig. 5 shows the topology of GNN with one hidden
layer. The model of each neuron in the GNN includes non-linearity
at the output end. We use a common form of non-linearity which is
hyperbolic tangent function. Multilayer perceptron is trained in
a supervised manner with a highly popular algorithm known as the
back-propagation algorithm. It is based on the error-correction
learning rule. GNN consist of a great number of neurons which are
connected to one another. A neuron is an information-processing
unit that is fundamental to the operation of a neural network. Fig. 6
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shows the model for a neuron. In mathematical terms, a neuron is
described by the following equation:

output ¼ F

 Xp

k¼1

wkxk � q

!
(5)

where x1, x2 . xp are the input signals. w1, w2 . wp are the synaptic
weights of neuron. q is threshold, output is CHF and F($) is the
activation function.

3.2.2. Optimizing network weight and threshold using GA
Genetic operation using colony search technology can be avoi-

ded getting into local extreme point. It can solve how to optimize
weight and threshold of BP network. It is employed to optimize the
weight and threshold of the network in this study. The operation is
divided into six sections as follows:

1) Coding of weight and threshold

The input signals should be transformed into genetic
genesdchromosome. The model adopts binary coding method. The
vector that chromosome responding with weight and threshold of
network is:

W ¼
�
W1;.;Wi;.; q1;.; qj

�
(6)

where Wi is the ith weight gene of chromosome, qj is the jth
threshold gene of chromosome.

2) Initialization of population

After coding the weight and threshold of the network, chro-
mosome is yielded at random and makes up an initial population.
We start iterative search using initial population as a start point.
Finally, population size, selection probability, crossover probability
F (•)

wp

w2

w1

∑

x1

x2

 

xp

Output

…

Fig. 6. Neuron model.
and mutation probability are determined by experiments. They are
80, 0.8, 0.6 and 0.001, respectively.

3) Fitness function

Fitness function is an important principle on evaluating indi-
vidual. The Fitness function of the model uses the reciprocal of error
squaring sum between prediction signal and goal signal, is as
follow:

Ffitness ¼
1Pn

i¼1ðAi � TiÞ2þ3
(7)

where n stands for the number of the samples, Ai are prediction
signal, Ti is goal signal, 3 (>0) is any sufficiently small. The 3 is
0.00001 in this study.

4) Selection operation

The selection operation is to choose the individual who has the
large fitness from the population. It has the chance to propagate
offspring. A roulette wheel selection method is used to choose new
individual in this study. Probability of individual selection is:

Pi ¼
FiPn

i¼1 Fi
(8)

where, Pi and Fi are the selection probability and fitness of ith
individual, respectively.

5) Crossover operation

The crossover operation for GA creates variation in the pop-
ulation by producing new offspring that consists of the parts taking
from each parent. It is that some genes of two chromosomes are
exchanged to produce new individual. In this study, two parental
chromosomes and bunch’s crossing position are determined by
random.

6) Mutation operation

The mutation operation introduces random changes in structure
in the population. It is to change some values of chromosomes of
weight and threshold with little probability. It cannot only avoid
some information be lost perpetually resulting from selection and
crossover operation, but also ensure validity of genetic arithmetic.
By using the above genetic algorithm operation, appropriate
network weight and threshold are obtained. The overall classifica-
tion, GA optimization, training, learning and prediction procedure
for the each cluster of CHF data is represented in Fig. 7.

In brief, genetic algorithms using a variety of coding, recombi-
nation, mutation and fitness-based selection strategies may be
used to evolve ANN with parameters optimized for predicting
problems. Although in many domains genetic algorithms evolved
the optimal ANN for predicting problems and they have provided
better solutions for optimization problems, there are some limita-
tions. One limitation is that the choice of parameter values for the
genetic algorithms (random initial populations of recombinant
variables, crossover and mutation rates and number of generations
for evolution) and the neural networks (number of hidden layers,
number of neurons per hidden layer, learning rates and
momentum) may have influenced the CHF predicted and they are
determined by many experiments. Another limitation is different
procedures evolved the optimal ANN and they are somewhat
different. This reinforces the fact that genetic algorithms, while



Table 1
Fuzzy cluster centers of the CHF database.
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finding good solutions to a prediction problem, may not find the
single best solution representing a global minimum on a parameter
error surface, since an exhaustive combinatorial search has not
been performed [36]. Such algorithms should be further studied on
other prediction problems.
Cluster P (kPa) G (kg m�2 s�1) x(-) q (kW m�2)

1 16300.1 5273.8 �0.36 20717.3
2 5564.5 1328.9 0.17 3443.6
3 14699.8 4874.5 �0. 15 4908.7
4 3347.2 5832.3 0.31 1499.1
5 1260.3 583.6 0.78 938.9
4. Fuzzy clustering of the CHF data

The 2006 CHF look-up table [30] was selected as the database in
this study. The study is restricted to local conditions type CHF,
which is a dependent variable in the CHF experiment. The con-
verted CHF data consist of the relationship of four variables, P, G, x
and q. With the CHF data set X [P, G, x, q], the optimal cluster centers
are found to have five clusters by using the fuzzy clustering method
explained in the prior sections. Through sensitivity study, the
weighting exponent m is chosen as 1.25. Five clusters are deter-
mined by using fuzzy clustering. The calculated cluster centers are
represented in Table 1. By an investigation into the clustered data,
each cluster has a characteristic data range as shown in Table 2.
5. Prediction of the CHF

The GNN is trained and tested based on the database. Typically
75% of the each cluster data was used for training and cross vali-
dation (60% for training and 15% for cross validation) and the rest
25% for testing. The mean square errors (MSE) of the each cluster
training, validation and testing are all lower than 0.04823, 0.06185
and 0.07364, respectively. The prediction results for clusters are
represented in Fig. 8. Fig. 8 is the comparison between the database
and prediction results of all five clusters by using GNN. From Fig. 8,
we can see the prediction results of the local condition type are
consistent with experimental data very well. From the results, the
MSE are lower than 0.143.

In the following, we compared the results obtained by GNN with
other empirical correlations. Kottowski et al. [34] carried out
experiments on the CHF for sodium and potassium, derived the
following empirical correlation based on 170 data points, including
their own data and some others:

qc=GHfg ¼ 0:216ðdH=LÞ0:8ð1� 2xÞG�0:193: (9)

Covering the following ranges of the length/hydraulic diameter
ratio L/dH¼ 30–125, the critical quality x¼�0.4–0 and the mass
flux G¼ 50–800 kg/m2 s. Fig. 9 shows the results obtained by GNN,
which are compared with the calculation data using Kottowski’s
empirical correlation. Good agreement between the results
obtained by GNN and experimental data. They make a great deal of
difference between Kottowski’s calculation data and experimental
data. Different working medium and materials are likely lead to the
difference. B&W-2 correlation is derived based on 207 experi-
mental data points:

qCHF ¼ 3:155� 10�3ð1:155� 16:025 dHÞ �
	

3:702

� 107
�

4:3604� 10�4G
�B
�48:21Gxhfg


�

�
	

12:71
�

2:252� 10�3G
�A



(10)

where A¼ 0.712þ 3.006�10�5(P-13790), B¼ 0.834þ 9.93�10�5

(P-13790).
Covering the following ranges of the system pressure

P¼ 13790–16550 KPa, the hydraulic diameter dH¼ 0.0051–
0.0127 m, the critical quality x¼�0.03–0.2 and the mass flux
G¼ 1020–5425 kg/m2 s. Fig. 10 shows the results obtained by GNN,



Table 2
The database of each cluster by fuzzy classification.

Cluster Number of data P (kPa) G (kg m�2 s�1) x(-)

1 1604 5000–21000 0–55000 �0.5–0.9
2 482 100–12000 750–8000 �0.5–�0.10
3 1682 500–16000 0–8000 �0.05–0.9
4 1862 100–14000 0–6000 �0.5–0.6
5 1300 3000–21000 2000–8000 �0.5–0.9

Fig. 8. Comparisons between the Database and Pre
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which are compared with the calculation data using B&W-2
empirical correlation. They are consistent with experimental data.
However, the B&W-2 empirical correlation can only be applied in
its experimental parameter ranges. The GNN has the wide appli-
cable ranges. Moreover, the GNN give accurately prediction. The
GNN has been applied successfully in the prediction of CHF for
upward water flow in vertical round tubes under the wide appli-
cable ranges.
diction results of the Genetic Neural Network.
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6. Parametric trends of CHF

In this section, the parametric trends based on local conditions
are predicted by using GNN. The local conditions hypothesis is
nearly independent of the other variable besides system pressure,
mass flux and critical quality. However, it is very useful for the
prediction of the CHF in practical applications. The prediction
parametric trends are shown in Figs. 11–13. In the figures, the actual
outputs of the GNN are simply connected by lines. The trends agree
with general understanding. In the following, the parametric trends
are discussed.

The overall trend of system pressure is shown in Fig. 11. In this
figure, the results obtained by the GNN agree well with the data-
base. Fig. 11 shows the variation of CHF with pressure under local
conditions. CHF data are represented for a fixed mass velocities
3000 kg m�2 s�1 and nine different critical qualities over a broad
pressure range of 1–21 MPa. From Fig. 11, we can clearly see that the
CHF decreases with increasing system pressure under sub-cooled
boiling. However, the pressure effect is shown to be complex under
nuclear boiling. In overall, the CHF increases with pressure at low
pressures, passes through a maximum, then decreases at higher
pressures. However it should be noted that the trend is not so clear.
The maximum is found at about 4 MPa. From Fig. 11, we can also see
that the CHF decreases with increasing critical quality. Moreover,
the effect of critical quality with sub-cooled boiling is larger then
nuclear boiling.
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The effect of mass velocity on CHF at 10 MPa is represented in
Fig. 12 for nine different critical qualities over a broad mass velocity
range of 1000–8000 kg m�2 s�1. In this figure, good agreement
between the results obtained by the GNN and database was found.
Fig. 12 shows the CHF increases with increasing mass velocity
under sub-cooled boiling. However, the mass velocity is shown to
be complex under nuclear boiling. In overall, the CHF decreases
with mass velocity at low mass velocity, passes through
a minimum, then increases at higher mass velocity. However it
should be noted that the trend is not so clear. The minimum is
found at about 3000 kg m�2 s�1. The liquid film thickness
decreases, entrainment increases with increasing mass flux, which
results in an early occurrence of CHF. From Fig. 12, we can also see
that the CHF decreases with increasing critical quality. Moreover,
the effect of critical quality with sub-cooled boiling is larger then
nuclear boiling.

The overall trend of critical quality is shown in Fig. 13. The effect
of critical quality on CHF at 10 MPa is represented in Fig. 13 for eight
different mass velocities over a broad critical quality range of�0.5–
0.9. In this figure, the results obtained by the GNN agree well with
the database. In overall, the CHF decreases as the critical quality
increases for low- and intermediate-quality regions as shown in
Fig. 13. At high qualities, however, the CHF remains almost constant
regardless of the quality increase.
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7. Prediction of the CHF in vertical narrow annuli by GNN

In this section, prediction of dryout point is investigated by GNN
with distilled water upflowing through narrow annular channel
with 0.95 mm and 1.5 mm gaps, respectively. The GNN can be
applied to the following ranges of flow: system pressure, 1.08–
3.11 MPa; mass flux, 56.5–141.6 kg m�2 s�1; steam quality, 0.694–
0.987. The basic experimental apparatus are briefly introduced in
Section 2. We obtained 301 experimental data [35]. In the
following, the comparisons between the prediction results of the
Groeneveld look-up table [30] and present data are firstly shown in
Figs. 14 and 15. From Figs. 14 and 15, we can see there is a large
deviation between them. The discrepancy can be attributed to the
following reasons: While the Groeneveld look-up table is based on
fairly sizeable experimental databases, the size of test tubes
employed in their experiments is much larger then the narrow
annuli. The equivalent diameter of narrow annuli is outside the
applied range of Groeneveld look-up table. The inner and outer
surfaces of narrow annuli affect with each other. Due to its partic-
ular structure geometry, mechanism of dryout in narrow annuli
may be more complex than that of conventional round tubes and
further study should be carried out. Next, the GNN is trained and
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tested based on those experimental data. Typically 75% of the
experimental data was used for training and cross validation (60%
for training and 15% for cross validation) and the rest 25% for
testing. The mean square errors (MSE) of the training, validation
and testing are all lower than 0.05148, 0.07263 and 0.06594,
respectively. The trained GNN is used to predict CHF. The prediction
results are as following Figs. 16 and 17. From Figs. 16 and 17, we can
clearly find that the prediction results by GNN have a good agree-
ment with experimental data. From the results, the MSE error of the
prediction results are lower than 0.15.

8. Conclusions

A new method of predicting the CHF is proposed to use the fuzzy
c-means clustering and the GNN. The GNN mode is constructed.
The GNN mode has some advantages of its globe optimal searching,
quick convergence speed and solving non-linear problem. The 2006
CHF look-up table [30] is successfully partitioned into five groups
by using Fuzzy c-means (FCM) clustering algorithm according to
the data characteristics. After classification of the data, The CHF
data in each group are trained in a GNN to predict the CHF. Local
condition type CHF data are predicted successfully on the basis of
6930 CHF data from the 2006 CHF look-up table [30]. The predic-
tion results are consistent with database very well. The developed
method can be used in numerous two-phase flow problems. In
addition, the effects of main parameters such as system pressure,
mass flow rate and equilibrium quality on CHF were analyzed using
the GNN. The following conclusions are obtained: (1) The CHF
decreases with increasing system pressure under sub-cooled
boiling. The CHF increases with pressure at low pressures, passes
through a maximum, then decreases at higher pressures under
nuclear boiling. (2) The CHF increases with increasing mass velocity
with sub-cooled boiling. The CHF decreases with mass velocity at
low mass velocity, passes through a minimum, then increases at
higher mass velocity under nuclear boiling. (3) The CHF decreases
as the critical quality increases for low- and intermediate-quality
regions. At high qualities, however, the CHF remains almost
constant regardless of the quality increase. The results agree with
practical behavior as it is generally understood. At last, the GNN is
successfully applied to predict the CHF with distilled water flowing
upward through narrow annular channel with 0.95 mm and
1.5 mm gaps, respectively. The GNN prediction results have a good
agreement with experimental data. The proposed methodology
allows us to achieve accurate results, thus it is suitable for the
processing of the CHF data.
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